Semana passada comprei um produto que custou R$ 1,58. Dei à balconista R$ 2,00 e peguei na minha bolsa 8 centavos, para evitar receber ainda mais moedas.
A balconista pegou o dinheiro e ficou olhando para a máquina registradora, aparentemente sem saber o que fazer. Tentei explicar que ela tinha que me dar 50 centavos de troco, mas ela não se convenceu e chamou o gerente para ajudá-la. Ficou com lágrimas nos olhos enquanto o gerente tentava explicar e ela aparentemente continuava sem entender.
Por que estou contando isso?
Porque me dei conta da evolução do ensino de matemática desde 1960, que foi assim:
1. Ensino de matemática em 1960:
Um cortador de lenha vende um carro de lenha por R$ 100,00.
O custo de produção desse carro de lenha é igual a 4/5 do preço de venda.
Qual é o lucro?
2. Ensino de matemática em 1970:
Um cortador de lenha vende um carro de lenha por R$ 100,00.
O custo de produção desse carro de lenha é igual a 4/5 do preço de venda ou R$ 80,00.
Qual é o lucro?
3. Ensino de matemática em 1980:
Um cortador de lenha vende um carro de lenha por R$ 100,00.
O custo de produção desse carro de lenha é R$ 80,00.
Qual é o lucro?
4. Ensino de matemática em 1990:
Um cortador de lenha vende um carro de lenha por R$ 100,00.
O custo de produção desse carro de lenha é R$ 80,00.
Escolha a resposta certa, que indica o lucro:
( )R$ 20,00 ( )R$40,00 ( )R$60,00 ( )R$80,00 ( )R$100,00
5. Ensino de matemática em 2000:
Um cortador de lenha vende um carro de lenha por R$ 100,00.
O custo de produção desse carro de lenha é R$ 80,00.
O lucro é de R$ 20,00.
Está certo?
( )SIM ( ) NÃO
6. Ensino de matemática em 2014:
Um cortador de lenha vende um carro de lenha por R$100,00.
O custo de produção é R$ 80,00.
Se você souber ler coloque um ‘X’ no R$ 20,00.
( )R$ 20,00 ( )R$40,00 ( )R$60,00 ( )R$80,00 ( )R$100,00
[ad#Retangulo – Anuncios – Duplo]